A new Chiral Two - Matrix Theory for Dirac Spectra with Imaginary Chemical Potential

نویسندگان

  • G. Akemann
  • P. H. Damgaard
  • J. C. Osborn
  • K. Splittorff
چکیده

We solve a new chiral Random Two-Matrix Theory by means of biorthogonal polynomials for any matrix size N. By deriving the relevant kernels we find explicit formulas for all (n, k)-point spectral (mixed or unmixed) correlation functions. In the microscopic limit we find the corresponding scaling functions, and thus derive all spectral correlators in this limit as well. We extend these results to the ordinary (non-chiral) ensembles, and also there provide explicit solutions for any finite size N , and in the microscopic scaling limit. Our results give the general analytical expressions for the microscopic correlation functions of the Dirac operator eigenvalues in theories with imaginary baryon and isospin chemical potential, and can be used to extract the tree-level pion decay constant from lattice gauge theory configurations. We find exact agreement with previous computations based on the low-energy effective field theory in the two special cases where comparisons are possible.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : h ep - t h / 06 09 05 9 v 1 8 S ep 2 00 6 A new Chiral Two - Matrix Theory for Dirac Spectra with Imaginary Chemical Potential

We solve a new chiral Random Two-Matrix Theory by means of biorthogonal polynomials for any matrix size N. By deriving the relevant kernels we find explicit formulas for all (n, k)-point spectral (mixed or unmixed) correlation functions. In the microscopic limit we find the corresponding scaling functions, and thus derive all spectral correlators in this limit as well. We extend these results t...

متن کامل

Unquenched complex dirac spectra at nonzero chemical potential: two-color QCD lattice data versus matrix model.

We compare analytic predictions of non-Hermitian chiral random matrix theory with the complex Dirac operator eigenvalue spectrum of two-color lattice gauge theory with dynamical fermions at nonzero chemical potential. The Dirac eigenvalues come in complex conjugate pairs, making the action of this theory real and positive for our choice of two staggered flavors. This enables us to use standard ...

متن کامل

Determination of Fπ from Distributions of Dirac Operator Eigenvalues with Imaginary Density

In the ε-regime of lattice QCD one can get an accurate measurement of the pion decay constant Fπ by monitoring how just one single Dirac operator eigenvalue splits into two when subjected to two different external vector sources. Because we choose imaginary chemical potentials our Dirac eigenvalues remain real. Based on the relevant chiral Random Two-Matrix Theory we derive individual eigenvalu...

متن کامل

ar X iv : h ep - l at / 0 61 00 16 v 1 2 O ct 2 00 6 Partially quenched QCD with a chemical potential

Using a chiral random matrix theory we can now derive the low energy partition functions and Dirac eigenvalue correlations of QCD with different chemical potentials for the dynamical and valence quarks. The results can also be extended to complex (and purely imaginary) chemical potential. We also discuss possible applications such as fitting to low energy constants and understanding the phase d...

متن کامل

Partially quenched QCD with a chemical potential

Using a chiral random matrix theory we can now derive the low energy partition functions and Dirac eigenvalue correlations of QCD with different chemical potentials for the dynamical and valence quarks. The results can also be extended to complex (and purely imaginary) chemical potential. We also discuss possible applications such as fitting to low energy constants and understanding the phase d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007